Medullary inputs to nucleus accumbens neurons.
نویسندگان
چکیده
Extracellular single-unit recording experiments were done in α-chloralose-anesthetized, paralyzed, and artificially ventilated rats to investigate the effect of stimulation of the nucleus of the solitary tract (NTS) and the ventrolateral medulla (VLM) in the region of the A1 noradrenergic cell group on the activity of neurons in the nucleus accumbens (NA). In addition, the response of NA neurons to activation of the arterial baroreceptors was investigated. Electrical or glutamate (Glu) stimulation of the ipsilateral NTS excited 47 of 99 (48%) and inhibited 10 of 99 (10%) of the units tested in the NA. Similarly, electrical or Glu stimulation of the ipsilateral VLM excited 24 of 97 (24.7%) or inhibited 7 of 97 (7.2%) of the units tested. Approximately 22% (17 of 77) of these units responded to stimulation of both the NTS and VLM. Simultaneous stimulation of both the NTS and VLM potentiated the response of the NA neuron tested. CoCl2 injection into the ipsilateral NTS did not alter the response of NA neurons to stimulation of the VLM. Similarly, CoCl2 injections into the ipsilateral VLM did not alter the response of NA neurons to NTS stimulation. The discharge rate of some of the units (6 of 49) that were activated by both NTS and VLM was also increased during the activation of arterial baroreceptors by the acute rise in systemic arterial pressure to phenylephrine injection. Units that responded to stimulation of the NTS and VLM and to baroreceptor activation were located in the shell region of the NA. These data indicate that afferent inputs from the NTS and VLM converge onto NA neurons and suggest that visceral and cardiovascular afferent inputs may influence the output of neurons in the shell region of the NA.
منابع مشابه
Functional Interaction between the Shell Sub-Region of the Nucleus Accumbens and the Ventral Tegmental Area in Response to Morphine: an Electrophysiological Study
This study has examined the functional importance of nucleus accumbens (NAc)-ventral tegmental area (VTA) interactions. As it is known, this interaction is important in associative reward processes. Under urethane anesthesia, extracellular single unit recordings of the shell sub-region of the nucleus accumbens (NAcSh) neurons were employed to determine the functional contributions of the VTA to...
متن کاملEvaluation of the effect of orexin-1 receptors in the nucleus accumbens shell on cost-benefit decision making in male rats
Background: Cost-benefit decision-making is a one of the decision-making models in which the animal achieves a final benefit (reward) by evaluating the cost (effort or delay). The role of different brain regions such as nucleus accumbens in this process has been proven. Orexin is a neuropeptide expressed exclusively by lateral hypothalamus area neurons and orexin-producing neurons project their...
متن کاملMedullary taste modulation by nucleus accumbens shell 1 Descending projections from the nucleus accumbens shell excite 1 activity of taste - responsive neurons in the nucleus of the solitary 2 tract in the hamster 3 4 5
30 31 The nucleus of the solitary tract (NST) and the parabrachial nuclei (PbN) are the first 32 and second relays in the rodent central taste pathway. A series of electrophysiological 33 experiments revealed that spontaneous and taste-evoked activities of brainstem gustatory 34 neurons are altered by the descending input from multiple forebrain nuclei in the central taste 35 pathway. The nucle...
متن کاملDopaminergic modulation of prefrontal cortical input to nucleus accumbens neurons in vivo.
Dopaminergic transmission in the nucleus accumbens has been proposed to modulate the effects of converging excitatory inputs from the cortex, hippocampus, and amygdala. Here, we used in vivo intracellular recording in anesthetized rats to examine the response of nucleus accumbens neurons to stimulation of the prefrontal cortex (PFC) and the ventral tegmental area (VTA). The EPSP elicited in acc...
متن کاملSynaptic interactions among excitatory afferents to nucleus accumbens neurons: hippocampal gating of prefrontal cortical input.
The interactions among excitatory inputs arising from the prefrontal cortex, amygdala, and hippocampus, and innervating nucleus accumbens neurons were studied using in vivo intracellular recording techniques. Neurons recorded in the accumbens displayed one of three activity states: (1) silent, (2) spontaneously firing at low, constant rates, or (3) a bistable membrane potential, characterized b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Regulatory, integrative and comparative physiology
دوره 273 6 شماره
صفحات -
تاریخ انتشار 1997